Instruction manual
FOR RESEARCH USE ONLY
NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

AKT1, 1-480aa, Human, His tag, Insect cell

Cat.NO.: TP01116

Synonyms:RAC-alpha serine/threonine-protein kinase, AKT, CWS6, PKB, PKB-ALPHA, PRKBA, RAC, RACALPHA

Description:AKT1, also known as RAC-alpha serine/threonine-protein kinase, is catalytically inactive in serumstarved primary and immortalized fibroblasts. AKT1 and the related AKT2 are activated by platelet-derived growth factor. The activation is rapid and specific, and it is abrogated by mutations in the pleckstrin homology domain of AKT1. It was shown that the activation occurs through phosphatidylinositol 3-kinase. Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/threonine kinase AKT1, which then phosphorylates and inactivates components of the apoptotic machinery. Recombinant human AKT1, fused to Histag at C-terminus, was expressed in insect cell and purified by using conventional chromatography techniques.

Form:Liquid. In phosphate buffered saline (pH7.4), 20\% glycerol.

Molecular Weight:56.7kDa (488aa) 50-70KDa (SDS-PAGE under reducing conditions.)

Sequences:

MSDVAIVKEGWLHKRGEYIKTWRPRYFLLKNDGTFIGYKERPQDVDQREAPLNNFSVAQCQLMKTERPRPNTFIIR CLQWTTVIERTFHVETPEEREEWTTAIQTVADGLKKQEEEEMDFRSGSPSDNSGAEEMEVSLAKPKHRVTMNEFE YLKLLGKGTFGKVILVKEKATGRYYAMKILKKEVIVAKDEVAHTLTENRVLQNSRHPFLTALKYSFQTHDRLCFVMEY ANGGELFFHLSRERVFSEDRARFYGAEIVSALDYLHSEKNVVYRDLKLENLMLDKDGHIKITDFGLCKEGIKDGATM KTFCGTPEYLAPEVLEDNDYGRAVDWWGLGVVMYEMMCGRLPFYNQDHEKLFELILMEEIRFPRTLGPEAKSLLS GLLKKDPKQRLGGGSEDAKEIMQHRFFAGIVWQHVYEKKLSPPFKPQVTSETDTRYFDEEFTAQMITITPPDQDDS MECVDSERRPHFPQFSYSASGTALEHHHHHH

Purity:> 95\% by HPLC

Concentration: $0.5 \mathrm{mg} / \mathrm{ml}$ (determined by absorbance at 280nm)
Endotoxin Level:<1.0 EU per 1 ug of protein (determined by LAL method)

Storage: Can be stored at $+4^{\circ} \mathrm{C}$ short term (1-2 weeks). For long term storage, aliquot and store at $-20^{\circ} \mathrm{C}$ or $-70^{\circ} \mathrm{C}$. Avoid repeated freezing and thawing cycles.

